

4th Energy Future Conference 2021 TRANSFORMATION OF WASTE NO_x TO AMMONIA Author: Maggie Lim*, Jing Sun, Ali Jalili, Rahman Daiyan, Emma Lovell, Rose Amal

BACKGROUND & MOTIVATION Ammonia (NH₃) is one of the most important chemical building blocks for manufacture of many chemical commodities and has crucial application as fuel (Figure 1). **Energy Fue Plastics Explosive** Figure 1: Ammonia applications.

• The energy uses of NH_3 have always been significant to human life since the past and is claimed to play increasingly important role in the future applications (Figure 2).

Figure 2: Energy uses of NH_3 .

However, NH₃ primary production is non-environmentally friendly and energy intensive. As such, we have recently demonstrated the formation of NO_x intermediates via plasma reaction and subsequent electrocatalytic NO_x reduction reactions (NO_xRR) as a potential pathway to generate complete green NH₄⁺ ions with high yield (Figure 3).¹⁻³

Figure 3: Complete green NH_3/NH_4^+ production.

AIMS

• To generate simple and inexpensive NO_xRR catalyst to effectively produce high yield NH₄⁺ at low applied potential • To determine the correct oxidation state of Cu (CuO, Cu₂O or Cu) as the most effective active sites that favor NO_xRR through surface chemistry tuning of CuO_x/CuF catalysts by electrodeposition

RESULTS & DISCUSSIONS

CuO_x/CuF Catalyst Characterization Tests

- Normalized X-ray diffraction (XRD) pattern (Figure 7) reveals that irrespective of the deposition time, Cu {111}, Cu {200}, Cu {220}, Cu₂O {111}, Cu₂O {200}, and Cu₂O {220} are formed on the catalysts
- 400s sample shows the highest normalized intensity peak for all Cu₂O types, inferring it has the highest amount of Cu₂O

- Normalized Raman profile (Figure 9) presents Cu oxide species trend of CuO_x/CuF catalysts with increasing electrodeposition duration as follows: $Cu_2O_x \rightarrow Cu_2O_\delta \rightarrow Cu_2O \rightarrow CuO_{1-x} \rightarrow CuO$ with x<1
- 400s sample shows the highest normalized intensity peak for wavenumber of Cu₂O (218 cm⁻¹), indicating that it has the highest amount of Cu_2O

When tested at -0.5 V_{RHE} (Figure 10), 400s sample achieves:

- The highest NH₄⁺ production rate of ~ 43 nmol/s/cm²

Cu 2p X-ray photoelectron (XPS) measurement (Figure 8a) demonstrates high intensity peak at binding energy of ~ 932.5 and 952.5 eV for all CuO_x/CuF catalysts. This indicates that in addition to metallic Cu, there is also formation of Cu⁺

• The Auger parameters (i.e., the summation of 932.5 eV binding energy and 916.6 eV kinetics energy from Cu LMM spectra in Figure 8b) for all catalysts is < 1850 eV, signifying that Cu⁺ is the main oxidation state on the surfaces

• The highest Faradaic efficiency towards NH_4^+ (FE_{NH4}⁺) of > 85%

Comparing CuO_x/CuF catalyst to other state-of-the-art NO_vRR catalysts that also perform under acidic condition (Figure 12), CuO_x/CuF catalyst is more competent than others as it displays higher NH₄⁺ yield at lower potential.

In summary, we report:

(1) Sun, J et al. (2021), *EES*, *14* (2). (2) Daiyan, R et al. (2021), EES, 14 (6).

- (3) Daiyan, R et al. (2020), ACS Energy Lett., 5 (12).
- (4) Davó-Quiñonero, A et al. (2020) ACS Catal., 10 (11).

I thank Jing Sun, Dr Ali, Jalili, Rahman Daiyan, Emma Lovell Rose Amal and the members of PARTCAT group in providing valuable discussions and training.

Figure 11: $NO_{x}RR$ reaction mechanism by $Cu_{2}O$.

KEY FINDINGS

Complementing characterization and $NO_{x}RR-to-NH_{4}^{+}$ results production performances, we can deduce that:

- NH₄⁺ production activity from NO_xRR is positively correlated to the Cu₂O amount.
- Cu₂O is the most effective active sites for NO_xRR to producing NH_4^+ as compared to metallic Cu and CuO.
- Formation oxygen vacancies Cu₂O thermodynamically more favorable as compared to CuO,⁴ which in turn, assist with the NO_xRR pathway as illustrated in Figure 11 and the selectivity trends towards NH₄⁺

Figure 12: State-of-the-art catalysts for NO_xRR

CONCLUSIONS

• The benefits of Cu₂O species over other Cu species (metallic Cu and CuO) in facilitating the $NO_{x}RR$ -to- NH_{4} + production

• Using electrodeposition method, we are able to tune the surface chemistry of the CuO_x/CuF catalyst. Our NO_xRR measurements reveal that catalyst generated at 400s and -1.0 V_{RHE} is the most optimum of all: NH₄⁺ production rate of 43 nmols⁻¹cm⁻² with a $FE_{NH4}^+ > 85\%$ at -0.5 V due to having the greatest amount of Cu_2O • The capability of Cu_2O in improving conversion of NO_x into NH_4^+ can be ascribed to the higher amounts of oxygen vacancies naturally present in Cu₂O as compared to CuO and metallic Cu In brief, our catalyst also displays the economic feasibility and applicability of NO_xRR intermediary approach to generate green NH₃ for P2X and hydrogen economy

REFERENCES

ACKNOWLEDGEMENTS