

Accelerating electron-transfer and tuning product selectivity through surficial vacancy engineering on CZTS/CdS for photoelectrochemical CO₂ reduction

Shujie Zhou, Kaiwen Sun, Jialiang Huang, Xinxin Lu, Bingqiao Xie, Doudou Zhang, Judy N. Hart, Cui Ying Toe, Xiaojing Hao*, Rose Amal*

(mA/cm²)

Product

Never Stand Still

School of Chemical Engineering, UNSW Sydney, NSW, 2052, Australia School of Photovoltaic and Renewable Energy Engineering, UNSW Sydney, NSW 2052, Australia

Research background

• Photoelectrochemical (PEC) CO_2 reduction reaction:

Workstation

- > One of the most promising alternatives to address the energy crisis and global warming.¹
- \succ Direct conversion of sustainable solar energy to value added chemicals. Electrochemical

Surface defect engineering

- Heat treatment(HT) in different atmospheres
- > CZTS/CdS (HN) exhibits lower photocurrent density compared to CZTS/CdS (HA), but higher CO yield rate.
- > CZTS/CdS (HA) results in oxygen doped CdS, which favours the CO₂ and CO adsorption capability.
- > CZTS/CdS (HN) results in more S-vacancies, which facilitates the surficial CO desorption process.

Fig.1 Schematic illustration of typical PEC CO₂ reduction device and the possible charge transfer route within the photocathode.

- Cu₂ZnSnS₄(CZTS)-based photocathode
- \succ CZTS: Well-known photovoltaic material with promising efficiency and good commercialization potential.²
- Challenges of CZTS photocathode for PEC CO₂ reduction:³
- Serious charge recombination,

 \blacktriangleright Uncontrollable CO₂ reduction selectivity and reaction pathway.

Strategy & Design

- Heat treatment(HT) on CZTS/CdS photocathode
- HT in air: CZTS/CdS (HA) results in O-doped CdS
- \succ HT in N₂: CZTS/CdS (HN) results in CdS with S-vacancy.

Fig.2 Schematic diagram of fabrication process of CZTS, CZTS/CdS, CZTS/CdS (HA) and CZTS/CdS (HN).

Interfacial elemental inter-diffusion

- Inter-diffusion between Cd in CdS and Cu/Zn in CZTS
- \succ More favourable band alignment with enlarged built-in potential.

___s(e)

> Accelerated interfacial charge transfer after HT. (a)

(b)

●Cd⊖S ●C ●O		
Adsorption Energy	O-doped CdS (010)	S-defected CdS (010)
(eV)		
CO_2	-0.305	-0.211
CO	-0.529	-0.508

Table. Calculated CO_2 and CO adsorption energies of O-doped CdS and S-vacancy defected CdS (S-defected CdS)

Fig.4 (a-b) I-t curves of CZTS/CdS, CZTS/CdS (HA) and CZTS/CdS (HN). CO yield rates of CZTS/CdS (HA) and CZTS/CdS (HN). (c-d) DFT-optimized structures of CO₂ adsorbed on O-doped CdS and CdS with S-vacancy. (e) EPR spectra of CZTS/CdS, CZTS/CdS (HA) and CZTS/CdS (HN).

Conclusion

- Elemental inter-diffusion between CdS and CZTS was observed. after HT, contributing to a more favourable band alignment at the interface with enlarged built-in potential.
- ✤HT in air, intrinsic S vacancies on CZTS/CdS surface can be

Fig.3 (a-b) Cross-sectional STEM image of CZTS/CdS (HA) with the linear atomic element distribution. (c-d) OCP and EIS curves of CZTS, CZTS/CdS and CZTS/CdS (HA). (e) Band alignment schemes of CZTS/CdS without HT and CZTS/CdS with.

replenished by oxygen (O-doping), resulting in better CO_2 and CO adsorption capability for alcohols production.

A HT in N₂, more S vacancies are generated on the surface, facilitating the surficial CO desorption process and leads to higher CO selectivity.

Reference

- ¹ Chang, X.; Wang, T.; Yang, P.; Zhang, G.; Gong, J. Adv. Mater. **2019,** 31 (31), 1804710.
- ² Yan, C.; Huang, J.; Sun, K.; Johnston, S.; Zhang, Y.; Sun, H.; Pu, A.; He, M.; Liu, F.; Eder, K. Nat. Energy 2018, 3 (9), 764.
- ³ Liu, L. Z.; Zhang, Y. H.; Huang, H. W. Solar RRL 2021, 5 (2), 202000430.

